Search results for "Tucker decomposition"

showing 4 items of 4 documents

Nonnegative Tensor Train Decompositions for Multi-domain Feature Extraction and Clustering

2016

Tensor train (TT) is one of the modern tensor decomposition models for low-rank approximation of high-order tensors. For nonnegative multiway array data analysis, we propose a nonnegative TT (NTT) decomposition algorithm for the NTT model and a hybrid model called the NTT-Tucker model. By employing the hierarchical alternating least squares approach, each fiber vector of core tensors is optimized efficiently at each iteration. We compared the performances of the proposed method with a standard nonnegative Tucker decomposition (NTD) algorithm by using benchmark data sets including event-related potential data and facial image data in multi-domain feature extraction and clustering tasks. It i…

Computer scienceFiber (mathematics)business.industryFeature extraction020206 networking & telecommunicationsPattern recognition010103 numerical & computational mathematics02 engineering and technology01 natural sciencesImage (mathematics)Multi domainCore (graph theory)0202 electrical engineering electronic engineering information engineeringDecomposition (computer science)TensorArtificial intelligence0101 mathematicsCluster analysisbusinessTucker decomposition
researchProduct

Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG

2013

Non-negative Canonical Polyadic decomposition (NCPD) and non-negative Tucker decomposition (NTD) were compared for extracting the multi-domain feature of visual mismatch negativity (vMMN), a small event-related potential (ERP), for the cognitive research. Since signal-to-noise ratio in vMMN is low, NTD outperformed NCPD. Moreover, we proposed an approach to select the multi-domain feature of an ERP among all extracted features and discussed determination of numbers of extracted components in NCPD and NTD regarding the ERP context.

AdultMaleComputer Networks and CommunicationsFeature extractionEmotionsMismatch negativityContext (language use)Signal-To-Noise RatioSignal-to-noise ratioEvent-related potentialDecomposition (computer science)HumansMathematicsBrain MappingElectronic Data Processingbusiness.industryta111BrainPattern recognitionElectroencephalographyGeneral MedicineMiddle AgedFeature (computer vision)Evoked Potentials VisualFemaleArtificial intelligencebusinessPhotic StimulationTucker decompositionInternational Journal of Neural Systems
researchProduct

Tensor decomposition of EEG signals: A brief review

2015

Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposit…

Current (mathematics)canonical polyadicNeuroscience(all)Electroencephalographyevent-related potentialsSignalMatrix decompositionMatrix (mathematics)tensor decompositionDecomposition (computer science)medicineEEGTensorLeast-Squares AnalysisEvoked PotentialsMathematicsCanonical polyadicSignalQuantitative Biology::Neurons and Cognitionmedicine.diagnostic_testGeneral NeuroscienceBrainElectroencephalographySignal Processing Computer-AssistedTuckerTensor decompositiontuckeraivotFactor Analysis StatisticalsignalAlgorithmEvent-related potentialsTucker decompositionJournal of Neuroscience Methods
researchProduct

Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint

2022

Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI dat…

Rank (linear algebra)Computer scienceMatrix normlow-rankmatrix decompositionsymbols.namesaketoiminnallinen magneettikuvausOrthogonalitytensorsTensor (intrinsic definition)Kronecker deltaTucker decompositionHumansElectrical and Electronic Engineeringcore tensorsparsity constraintRadiological and Ultrasound Technologybusiness.industrysignaalinkäsittelyfeature extractionsparse matricesBrainPattern recognitionbrain modelingMagnetic Resonance Imagingfunctional magnetic resonance imagingComputer Science ApplicationsConstraint (information theory)data modelssymbolsNoise (video)Artificial intelligencebusinessmulti-subject fMRI dataSoftwareAlgorithmsTucker decomposition
researchProduct